首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   381篇
  免费   16篇
  2016年   9篇
  2015年   9篇
  2014年   9篇
  2013年   11篇
  2012年   14篇
  2011年   11篇
  2010年   10篇
  2009年   9篇
  2008年   11篇
  2007年   12篇
  2006年   11篇
  2005年   12篇
  2004年   11篇
  2003年   7篇
  2002年   13篇
  1998年   4篇
  1996年   5篇
  1995年   7篇
  1994年   5篇
  1993年   6篇
  1989年   3篇
  1988年   5篇
  1987年   4篇
  1985年   3篇
  1984年   4篇
  1982年   8篇
  1981年   4篇
  1979年   7篇
  1978年   9篇
  1977年   6篇
  1976年   3篇
  1975年   5篇
  1974年   9篇
  1973年   3篇
  1972年   4篇
  1971年   4篇
  1969年   4篇
  1968年   3篇
  1966年   4篇
  1965年   4篇
  1961年   4篇
  1955年   4篇
  1954年   3篇
  1951年   5篇
  1950年   10篇
  1949年   5篇
  1947年   3篇
  1939年   3篇
  1937年   7篇
  1936年   5篇
排序方式: 共有397条查询结果,搜索用时 15 毫秒
51.
The cofactor of enzymatic, 1-aminocyclopropane-1-carboxylic acid dependent ethylene formation was concentrated on cation exchange columns. When chelators of cations were added to the homogenates, cofactor activity was lost. Cofactor fractions were partly resistant to oxidation at 600° C. Mn2+ substituted for the cofactor in ethylene formation from 1-aminocyclopropane-1-carboxylic acid by a protein fraction isolated from etiolated pea shoots. In addition, Mn2+ enhanced the stimulatory effect of the concentrated cofactor. The elution volume for the cofactor on a Sephadex G-25 column was lower than that of MnCl2. In paper electrophoresis the cofactor migrated to the cathode at pH 10.8 and 2.2. The RF of cofactor on cellulose plates developed in butanol: acetic acid: H2O was 0.4. After cellulose chromatography, cofactor activity had to be reconstituted by the addition of MnCl2. Chelators, anti-oxidants, and catalase were inhibitors of Mn2+-cofactor-dependent ethylene formation. The protein necessary for 1-aminocyclopropane-1-carboxylic acid dependent ethylene formation in vitro was seperated from 95–98% of the total protein in homogenates by DE-52 cellulose chromatography and (NH4)2SO4-fractionation.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - EDTA ethylenediaminetetraacetic acid - DDTC diethyldithiocarbamate  相似文献   
52.
Determinations of the number of microorganisms in lake water samples with the bright-field light microscope were performed using conventional counting chambers. Determinations with the fluorescence microscope were carried out after staining the organisms with acridine orange and filtering them onto Nuclepore filters. For transmission electron microscopy, a water sample was concentrated by centrifugation. The pellet was solidifed in agar, fixed, dehydrated, embedded in Epon, and cut into thin sections. The number and area of organism profiles per unit area of the sections were determined. The number of organisms per unit volume of the pellet was then calculated using stereological formulae. The corresponding number in the lake water was obtained from the ratio of volume of solidified pellet/volume of water sample. Control experiments with pure cultures of bacteria and algae showed good agreement between light and electron microscopic counts. This was also true for most lake water samples, but the electron microscopic preparations from some samples contained small vibrio-like bodies and ill-defined structures that made a precise comparison more difficult. Bacteria and small blue-green and green algae could not always be differentiated with the light microscope, but this was easily done by electron microscopy. Our results show that transmission electron microscopy can be used for checking light microscopic counts of microorganisms in lake water.  相似文献   
53.
Liver X Receptors (LXRs) coordinate the regulation of lipid and carbohydrate metabolism and insulin signaling. LXR-ligands lower plasma glucose in hyperglycemic rodents and have consequently been proposed as anti-diabetic agents. We investigated the metabolic effects induced by high carbohydrate diet in LXRalpha(-/-)beta(-/-) mice. Irrespective of diets, LXRalpha(-/-)beta(-/-) mice had reduced fatty acid, insulin, and C-peptide plasma levels than wild-type controls, suggesting a lower insulin production. High carbohydrate diet decreased the plasma glucose levels and the homeostasis model assessment (HOMA)-index in LXRalpha(-/-)beta(-/-) mice and increased hepatic triglyceride content and mRNA levels of lipogenic genes in wild-type and LXRalpha(-/-)beta(-/-) mice, proportionally. In wild-type mice high carbohydrate diet was associated with induced expression of LXR (1.5-fold), despite unchanged SREBP-1c expression. LXRalpha(-/-)beta(-/-) mice responded to this diet by induction of SREBP-1c. Our study suggests that in LXRalpha(-/-)beta(-/-) mice, glucose utilization seems to be privileged possibly due to reduced circulating free fatty acid levels.  相似文献   
54.
A sucrose (Suc) transporter cDNA has been cloned from Alonsoa meridionalis, a member of the Scrophulariaceae. This plant species has an open minor vein configuration and translocates mainly raffinose and stachyose in addition to Suc in the phloem (C. Knop, O. Voitsekhovskaja, G. Lohaus [2001] Planta 213: 80-91). These are typical properties of symplastic phloem loaders. For functional characterization, AmSUT1 cDNA was expressed in bakers' yeast (Saccharomyces cerevisiae). Substrate and inhibitor specificities, energy dependence, and Km value of the protein agree well with the properties measured for other Suc transporters of apoplastic phloem loaders. A polyclonal antiserum against the 17 N-terminal amino acids of the A. meridionalis Suc transporter AmSUT1 was used to determine the cellular localization of the AmSUT1 protein. Using fluorescence labeling on sections from A. meridionalis leaves and stems, AmSUT1 was localized exclusively in phloem cells. Further histological characterization identified these cells as companion cells and sieve elements. p-Chloromercuribenzenesulfonic acid affected the sugar exudation of cut leaves in such a way that the exudation rates of Suc and hexoses decreased, whereas those of raffinose and stachyose increased. The data presented indicate that phloem loading of Suc and retrieval of Suc in A. meridionalis are at least partly mediated by the activity of AmSUT1 in addition to symplastic phloem loading.  相似文献   
55.
The specific identification of Lymnaeid snails is based on a comparison of morphological characters of the shell, radula, renal and reproductive organs. However, the identification is complicated by dissection process, intra and interspecific similarity and variability of morphological characters. In the present study, polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) techniques targeted to the first and second internal transcribed spacers (ITS1 and ITS2) rDNA and to the mitochondrial 16S ribosomal gene (16S rDNAmt) were used to differentiate the species Lymnaea columella, L. viatrix, and L. diaphana from some localities of Brazil, Argentina, and Uruguay as well as to verify whether the molecular results corroborates the classical morphological method.PCR-RFLP analysis of the ITS1, ITS2, and 16S using 12 restriction enzymes revealed characteristic patterns for L. columella and L. diaphana which were concordant with the classical morphology. On the other hand, for L. viatrix populations a number of 1 to 6 profiles were generated while morphology provided the species pattern results.  相似文献   
56.
Contact of mononuclear human leukocytes with cellulose dialysis membranes may result in complement-independent cell activation, i.e. enhanced synthesis of cytokines, prostaglandins and an increase in 2-microglobulin synthesis. Cellular contact activation is specifically inhibited by the monosaccharidel-fucose suggesting that dialysis membrane associatedl-fucose residues are involved in leukocyte activation. In this study we have detected and quantitatedl-fucose on commercially-available cellulose dialysis membranes using two approaches. A sensitive enzymatic fluorescence assay detectedl-fucose after acid hydrolysis of flat sheet membranes. Values ranged from 79.3±3.6 to 90.2±5.0 pmol cm–2 for Hemophan® or Cuprophan® respectively. Enzymatic cleavage of terminal -l-fucopyranoses with -l-fucosidase yielded 7.7±3.3 pmoll-fucose per cm2 for Cuprophan. Enzymatic hydrolysis of the synthetic polymer membranes AN-69 and PC-PE did not yield detectable amounts ofl-fucose. In a second approach, binding of the fucose specific lectins ofLotus tetragonolobus andUlex europaeus (UEAI) demonstrated the presence of biologically accessiblel-fucose on the surface of cellulose membranes. Specific binding was observed with Cuprophan®, and up to 2.6±0.3 pmoll-fucose per cm2 was calculated to be present from Langmuir-type adsorption isotherms. The data presented are in line with the hypothesis that surface-associatedl-fucose residues on cellulose dialysis membranes participate in leukocyte contact activation.  相似文献   
57.
To investigate the factors governing the accumulation of sucroseand amino acids in the taproots of sugar beet, their contentswere measured in the leaves, phloem sap and the taproots ofsugar beet, fodder beet and a hybrid between both, grown oneither 3.0 or 0.5 mM nitrate. In the taproots the contents ofmalate, citrate and inorganic ions were also determined. Forthe high sucrose accumulation in sugar beet as compared to theother varieties three factors were found. (a) In sugar beet,less amino acids and more sucrose are taken up into the phloemthan in fodder beet. (b) In sugar beet, the sucrose and aminoacid syntheses are less sensitive to the nitrate concentrationsthat are required for optimal plant growth than in other varieties.In fodder beet, upon raising the nitrate concentration from0.5 mM to 3 mM, the synthesis and storage of sucrose is decreasedand that of amino acids increased. The corresponding valuesin sugar beet (0.5 mM) are similar to those in fodder beet andare not much affected by an increase of nitrate. (c) The sucroseaccumulation is limited by the accumulation of inorganic ionsin the taproots. The sucrose content in the taproots is negativelycorrelated to the total ion content. Whereas sucrose representstwo-third of all solutes in the taproots of sugar beet, it amountsto only one-third of the solutes in fodder beet taproots. Key words: Amino acids, Beta vulgans L, phloem sap, potassium, sucrose storage, sugar beet, taproots, transport  相似文献   
58.
The sensitivity of the cell-free protein synthesis systems from Acidanus brierleyi, Acidianus infernus, and Metallosphaera sedula, members of the archaeal order Sulfolobales, to 40 antibiotics with different specificities has been studied. The sensitivity patterns were compared to those of Sulfolobus solfataricus and other archaeal, bacterial, and eukaryotic systems. The comparative analysis shows that ribosomes from the sulfolobales are the most refractory to inhibitors of protein synthesis described so far. The sensitivity results have been used to ascertain in phylogenetic relationships among the members of the order Sulfolobales. The evolutionary significance of these results are analyzed in the context of the phylogenetic position of this group of extreme thermophilic microorganisms. Correspondence to: R. Amils  相似文献   
59.
60.
It was recently shown that Myxococcus xanthus harbors an alternative and reversible biosynthetic pathway to isovaleryl coenzyme A (CoA) branching from 3-hydroxy-3-methylglutaryl-CoA. Analyses of various mutants in these pathways for fatty acid profiles and fruiting body formation revealed for the first time the importance of isoprenoids for myxobacterial development.Myxobacteria are unique among the prokaryotes as (i) they can form highly complex fruiting bodies under starvation conditions, even up to microscopic tree-like structures (28); (ii) they can move on solid surfaces using different motility mechanisms (16); (iii) they produce some of the most cytotoxic secondary metabolites, with epothilone already in clinical use against cancer (2, 3); and (iv) they harbor the largest prokaryotic genomes found so far (15, 27). The large genome might be directly related to their complex life-style and the diverse secondary (3) and primary (9) metabolisms. Already in 2002 we found that myxobacteria are able to produce isovaleryl coenzyme A (IV-CoA) and compounds derived thereof via a new pathway that branches from 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA), which is the central intermediate of the well-known mevalonate-dependent isoprenoid biosynthesis (Fig. (Fig.1)1) (22, 23). Usually IV-CoA is derived from leucine degradation via the branched-chain keto acid dehydrogenase (BKD) complex (24), which is also the preferred pathway to IV-CoA in the myxobacteria Myxococcus xanthus and Stigmatella aurantiaca (Fig. (Fig.2A).2A). However, in bkd mutants, where no or only residual leucine degradation is possible (30), the alternative pathway is induced (Fig. (Fig.2B),2B), presumably to ensure the production of iso-fatty acids (iso-FAs) (5). A possible reason for this alternative pathway is the importance of IV-CoA-derived compounds in the complex myxobacterial life cycle, which is the starvation-induced formation of fruiting bodies in which the cells differentiate into myxospores. We showed that this pathway is induced during fruiting body formation in M. xanthus when leucine is limited. Under these conditions, this pathway might be more important for protein synthesis than for lipid remodeling, as lipids are present in excess during development due to the surface reduction from vegetative rods to round myxospores as described previously (29). Examples of IV-CoA-derived compounds are the unusual iso-branched ether lipids, which are almost exclusively produced in the developing myxospores. They might serve as structural lipids and signaling compounds during fruiting body formation (26).Open in a separate windowFIG. 1.Biosynthesis of IV-CoA and compounds derived thereof and biosynthesis of isoprenoids in M. xanthus. Broken arrows indicate multistep reactions; supplementation (double-lined arrows) with MVL and IVA can be used to complement selected mutants.Open in a separate windowFIG. 2.Short representations of proposed metabolic fluxes through the IV-CoA/isoprenoid network. Broken arrows indicate no metabolic flux. (A) DK1622 (wild type); (B) DK5643 (Δbkd); (C) DK5624 (Δbkd mvaS::kan); (D) HB002 (Δbkd liuC::kan); (E) HB002 with 1 mM IVA; (F) HB002 with 1 mM MVL. Ac-CoA, acetyl-CoA; MVA, mevalonic acid.In M. xanthus, we could recently identify candidate genes involved in the alternative pathway from HMG-CoA to IV-CoA. We also described the genes required for the degradation pathway of leucine and subsequently also those involved in the transformation of IV-CoA to HMG-CoA (4). In myxobacteria leucine is an important precursor for isoprenoid biosynthesis, as was already shown elsewhere for the biosynthesis of steroids (7) and prenylated secondary metabolites like aurachin (22) or leupyrrins (6), as well as volatiles like geosmin or germacradienol in M. xanthus and S. aurantiaca (11, 13). The interconnection of iso-FAs and isoprenoid biosynthesis made it difficult to assign functions to these compound classes during fruiting body formation in M. xanthus because it cannot be excluded that reduced leucine degradation also impairs isoprenoid biosynthesis. A mutant strain of M. xanthus that was blocked in the degradation of leucine and the alternative pathway had a deletion in the bkd locus as well as a plasmid insertion in the mvaS gene encoding the HMG-CoA synthase (strain DK5624). This double mutation severely affected isoprenoid biosynthesis (5), and cultures of DK5624 must be supplemented with mevalonolactone (MVL; the cyclized form of mevalonic acid) in order to enable growth (Fig. (Fig.2C).2C). Since we have identified the genes involved in IV-CoA biosynthesis and the mevalonate pathway (4), we can now start to identify differences between strains that show deficiencies in iso-FAs and strains that show deficiencies in isoprenoids via simple analysis of the FA profile and analysis of the myxobacterial development of selected mutants.All mutants used in this study (HB002 [Δbkd liuC::kan], HB015 [Δbkd MXAN_4265::kan], DK5624 [Δbkd mvaS::kan], HB019 [Δbkd mvaS::kan mvaS+], and HB020 [Δbkd MXAN_4265::kan mvaS+]) have been published previously (4), and FA analysis as well as myxobacterial fruiting body formation has also been described previously (26).M. xanthus HB002 (Δbkd liuC) shows only residual amounts of iso-FAs, as both leucine degradation and the alternative pathway to IV-CoA are blocked (Fig. (Fig.2D)2D) and its capability to form fruiting bodies is strongly reduced (Fig. (Fig.3).3). The residual amount of iso-FAs results from a second BKD activity in M. xanthus that has been identified by residual leucine incorporation as well as by residual enzymatic activity in bkd mutants (23, 30). This second BKD activity might be a side activity of the pyruvate dehydrogenase or a related chemical oxidative decarboxylation, as no second bkd locus could be identified in the genome (unpublished results). Moreover, growth of HB002 is not MVL dependent because the block in the alternative pathway does not affect isoprenoid biosynthesis, as liuC encodes a dehydratase/hydratase that is involved in the conversion of HMG-CoA to 3-methylglutaconyl-CoA and vice versa (4). As expected, the FA profile (4) as well as the developmental phenotype (data not shown) can be complemented (Fig. (Fig.2E)2E) by the addition of isovaleric acid (IVA), the free acid of IV-CoA, indicating the importance of iso-branched compounds for development in M. xanthus. Unexpectedly, addition of MVL (Fig. (Fig.2F)2F) also partially restored fruiting body formation without restoring the FA profile (Fig. (Fig.3).3). Similarly, M. xanthus HB015 (Δbkd MXAN_4265::kan) can produce only traces of iso-FAs, as both pathways to IV-CoA are blocked. MXAN_4265 encodes a protein with similarity to a glutaconyl-CoA transferase subunit, but from our previous results, we postulated it to be involved in the alternative pathway to IV-CoA (Fig. (Fig.1)1) (4). The respective mutant shows a severely impaired developmental phenotype, which can be complemented not only by the addition of IVA (not shown) but also by the addition of MVL (Fig. (Fig.3).3). Again, no change in the FA profile was observed after the addition of MVL. However, a plasmid insertion into MXAN_4265 has a polar effect on mvaS, which is the last gene in this five-gene operon and which is crucial for HMG-CoA formation from acetoacetyl-CoA and acetyl-CoA. Therefore, we assume that both pathways to HMG-CoA are blocked in HB015: no HMG-CoA can be made from acetyl-CoA and hardly any can be made via leucine degradation. In order to prove this hypothesis, we complemented HB015 with an additional copy of mvaS under the constitutive T7A1 promoter as described previously, using the plasmid pCK4267exp (4). The resulting strain, HB020 (Δbkd MXAN_4265::kan mvaS+), showed a restored developmental phenotype but still produced only trace amounts of iso-FAs.Open in a separate windowFIG. 3.Fruiting body formation on TPM agar in selected mutants at 24, 48, and 72 h after starvation. Numbers refer to the relative amounts (in percentages) of the most abundant iso-FA, iso-15:0, which is indicative of iso-FAs in general. Strains were DK1622 (wild type), HB002 (Δbkd liuC::kan), HB015 (Δbkd MXAN_4265::kan), DK5624 (Δbkd mvaS::kan), HB019 (Δbkd mvaS::kan mvaS+), and HB020 (Δbkd MXAN_4265::kan mvaS+). DK5624 was grown with 0.3 mM MVL prior to starvation, and the cells were washed and plated on TPM with or without 1 mM of MVL.The data from HB002, HB015, and HB020 indicate an important function of the mevalonate-dependent isoprenoid pathway for fruiting body formation in M. xanthus. Therefore, MVL addition can at least partially complement the developmental phenotype of DK5624, which cannot form fruiting bodies without MVL (Fig. (Fig.3).3). However, genetic complementation with mvaS in HB019 resulted in the expected complementation of the fruiting body formation and the FA profile (Fig. (Fig.3,3, bottom row).Leucine is one of the most abundant proteinogenic amino acids. It is also an essential amino acid for M. xanthus (8), which has a predatory life-style (1), as it lives on other bacteria and fungi that contain a lot of leucine. Moreover, leucine is very efficiently incorporated into isoprenoids like geosmin and aurachin (10, 22). Thus, one can conclude that in fact leucine degradation is the major pathway for HMG-CoA biosynthesis instead of the usual formation via acetoacetyl-CoA and acetyl-CoA by the HMG-CoA synthase MvaS as indicated in Fig. Fig.2A.2A. No difference in growth was observed between culture with and culture without MVL for HB002 (Δbkd liuC::kan) and HB015 (Δbkd MXAN_4265::kan) in rich medium (data not shown), probably due to the complete MvaS activity (in HB002) or residual BKD activity (in HB002 and HB015), resulting in all precursors for the mevalonate-dependent isoprenoid biosynthesis still being present in excess under these conditions. However, under starvation conditions a small reduction in HMG-CoA biosynthesis caused by completely blocked leucine degradation (as in HB002 due to the mutation in liuC [Fig. [Fig.2D])2D]) or reduced leucine degradation and a mutation in mvaS (as in HB015) might each result in a reduced isoprenoid level, which can be complemented at least partially by the addition of MVL. This would also explain the difference in the developmental phenotypes of HB002 and HB015, with the phenotype being more severe in HB002 (Fig. (Fig.3).3). The fact that complementation with IVA is in all cases more efficient than that with MVL can be explained by the role of the already-mentioned isolipids. They can be produced only after IVA addition, which also complements the (developmental) phenotype of some of these mutants (26).As isoprenoids represent probably the most diverse class of natural products (14), it is very hard to predict which particular isoprenoids might be responsible for the observed effects. Several isoprenoids (7, 11-13), prenylated secondary metabolites (6, 22), and carotenoids (18-21) are known from myxobacteria in general, and a major volatile compound from M. xanthus is the terpenoid geosmin (13). In order to test whether geosmin might be required for fruiting body formation, we constructed a plasmid insertion mutant in MXAN_6247, which is involved in the cyclization of farnesyl diphosphate to geosmin, following published procedures (4, 5). The resulting strain, HB022, showed the expected loss in geosmin production but no developmental phenotype (data not shown).Additionally, it cannot be excluded that prenylated proteins, sugars, or quinones from the respiratory chain are important for fruiting body formation. Moreover, stigmolone has been described as a pheromone involved in fruiting body formation in S. aurantiaca (25). Although its biosynthesis has not been elucidated yet, stigmolone could be an isoprenoid as well, which is deducible from the two iso-branched residues within its chemical structure (17). Nevertheless, the importance of isoprenoids for M. xanthus is evident from the data presented, and clearly more work is needed to identify the compound(s) involved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号